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19.1 Introduction

The peer-to-peer (P2P) paradigm has greatly in�uenced the design of
Internet applications nowadays. It gained both user popularity and signi�cant
attention from the research community, aiming to address various issues aris-
ing from the decentralized, autonomous, and the self-organizing nature of P2P
systems [379]. In this regard, quantitative and qualitative analysis at large
scale is a crucial part of that research. When evaluating widely deployed peer-
to-peer systems an analytical approach becomes, however, ine�ective due to
the large number of simpli�cations required. Therefore, conclusions about the
real-world performance of P2P systems can only be drawn by either launch-
ing an Internet-based prototype or by creating a simulation environment that
accurately captures the major characteristics of the heterogeneous Internet,
e.g. round-trip times, packet loss, and jitter. Running large scale experiments
with prototypes is a very challenging task due to the lack of su�ciently sized
testbeds. While PlanetLab [36] consists of about 800 nodes, it is still too
small and not diverse enough [434] to provide a precise snapshot for a quali-
tative and quantitative analysis of a P2P system. For that reason, simulation
is often the most appropriate evaluation method.

Internet properties, and especially their delay characteristics, often di-
rectly in�uence the performance of protocols and systems. In delay-optimized
overlays, for instance, proximity neighbor selection (PNS) algorithms select
the closest node in the underlying network from among those that are con-
sidered equivalent by the routing table. The de�nition of closeness is typi-
cally based on round-trip time (RTT). In addition, many real time streaming
systems (audio and video) have inherent delay constraints. Consequently,
the Internet end-to-end delay is a signi�cant parameter a�ecting the user's
satisfaction with the service. Therefore, in order to obtain accurate results,
simulations must include an adequate model of the Internet delay space.

We begin by discussing the factors that may a�ect the Internet end-to-
end delay in Section 19.2. Section 19.3 gives an overview on state-of-the
art Internet delay models. In Section 19.4 and 19.5, we present background
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information and details on a novel delay model, which we evaluate in Section
19.6. Concluding remarks are given in Section 19.7.

19.2 End-to-end Delay and Its Phenomena

In order to accurately model the Internet delay characteristics, the in�u-
encing entities and their inherent phenomena must be identi�ed. We de�ne
the term Internet end-to-end delay as the length of time it takes for a packet
to travel from the source host to its destination host. In more detail, this
packet is routed to the destination host via a sequence of intermediate nodes.
The Internet end-to-end delay is therefore the sum of the delays experienced
at each hop on the way to the destination. Each such delay in turn consists of
two components, a �xed and a variable component [68]. The �xed component
includes the transmission delay at a node and the propagation delay on the
link to the next node. The variable component, on the other side, includes
the processing and queuing delays at the node.

Normally, end-to-end delays vary over time[410]. We denote this delay
variation as end-to-end delay jitter. According to [126], there are three major
factors that may a�ect the end-to-end delay variation: queueing delay varia-
tions at each hop along the Internet path; intra-domain multi-path routing,
and inter-domain route alterations.

Thus, the main challenges in creating a Internet delay space model can
be summarized as follows:

� The model must be able to predict lifelike delays and jitter between a given
pair of end-hosts.

� The computation of delays must scale with respect to time.
� The model must have a compact representation.

We argue that the �rst requirement is subject to the geographical position
of the sender and the receiver. First, the minimal end-to-end delay between
two hosts is limited by the propagation speed of signals in the involved links
which increases proportionally with the link length. Second, the state of the
Internet infrastructure varies signi�cantly in di�erent countries. As long-term
measurement studies reveal (cf. Sec. 19.4), jitter and packet loss rates are
heavily in�uenced by the location of participating nodes. For example, the
routers in a developing country are more likely to su�er from overload than
those in a more economically advanced country.

Asymmetric Delays

The Internet end-to-end delay refers to the packet travel time from a
source to its receiver. This one-way delay (OWD) will typically be cal-
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culated by halving the measured RTT between two hosts, which consists
of the forward and reverse portion. Such an estimation most likely holds
true, if the path is symmetric. Symmetric paths, however, are not an obvious
case. Radio devices, for instance, may experience inhomogeneous connectiv-
ity depending on coverage and interferences. Home users attached via ADSL
possess inherently di�erent up- and downstream rates. Independent of the
access technology in use, Internet routing is generally not symmetric , i.e.,
intermediate nodes traversed from the source to the receiver may di�er from
the reverse direction. In the mid of 1996, Paxson revealed that 50 % of the
virtual Internet paths are asymmetric [357]. Nevertheless, implications for
the corresponding delays are not evident. Although router-level paths may
vary, the forward and reverse OWD can be almost equal due to similar path
lengths, router load etc.

Internet delay asymmetry has been studied in [354]. The authors show
that an asymmetric OWD implies di�erent forward and reverse paths. How-
ever, unequal router-level paths do not necessarily imply asymmetric de-
lays [354]. An asymmetric OWD could be mainly identi�ed for commercial
networks compared to research and education backbones. It is worth noting
that the end-to-end delay between two hosts within di�erent autonomous
systems (ASes) is signi�cantly determined by the intra-AS packet travel time
[512]. Combining the observations in [354] and [512] thus suggest that in par-
ticular delays between hosts located in di�erent provider domains are poorly
estimated by the half of RTT.

The approximation of the OWD by RTT/2 may over- or underestimate
the delay between two hosts. In contrast to the RTT, measuring the OWD is
a more complex and intrinsic task as it requires the dedicated cooperation of
the source as well as its receiver [416], [480]. Consequently, hosts cannot in-
stantaneously discover the OWD. Protocols and applications therefore use the
RTT, e.g., P2P applications while applying this metric for proximity neighbor
selection. The modeling process of network structures which include end-to-
end delays should be aware of the asymmetric delay phenomena. Neglecting
this Internet property seems reasonable when deployment issues allow for the
simpli�cation, or it is common practice in the speci�c context. Otherwise, the
approximation is unreasonable.

In the following sections of this chapter, we will focus on geometric
schemes to model the delay space. These approaches calculate the packet
travel time based on the Euclidean distance of arti�cial network coordinates.
Obviously, such models cannot account for delay asymmetry as the Euclidean
distance between two points is symmetric per de�nition. Further, we often
use the term delay as synonym for end-to-end or one-way delay .
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19.3 Existing Models in Literature

Currently, there are four di�erent approaches to obtaining an Internet
delay model: analytical functions, the king method, topology generators, and
Euclidean embedding. In this section, we will brie�y discuss each of those
approaches.

Analytical function. The simplest approach to predict delay is to randomly
place hosts into an two-dimensional Euclidean space. The delay is then com-
puted by an analytical function that uses as an input the distance between any
two hosts, for example, the Euclidean distance. While this approach requires
only simple run-time computations and does not introduce any memory over-
head, it has one major drawback: it neglects the geographical distribution and
locations of hosts on earth, which are needed for both the realistic modeling
of lifelike delays (i) and jitter (ii).

King method. The second approach uses the King tool [247] to compute
the all-pair end-to-end delays among a large number (typically dozens of
thousands) of globally distributed DNS servers. In more detail, each server
is located in a distinct domain, and the measured delays therefore repre-
sent the Internet delay space among the edge networks [513]. Due to the
quadratic time requirement for collecting this data, the amount of measured
data is often limited. For example, [247] provides a delay matrix with 1740
rows/columns. This is a non-trivial amount of measurement data to obtain,
but might be too less for huge P2P systems consisting over several thousands
of nodes. To tackle this issue, a delay synthesizer may be used that uses
the measured statistical data as an input in order to produce Internet de-
lay spaces at a large scale [513]. Nevertheless, this synthesizer only produces
static delays and neglect the delay variation.

Topology generators. The third approach is based on using arti�cial link
delays assigned by topology generators such as Inet [232] or GT-ITM [511].
This scheme initially generates a topology �le for a prede�ned number of
nodes n. A strategy for the �nal computation of the end-to-end delay depends
on the speci�c scenario and should consider two issues: (a) on-demand vs. pre-
computation and (b) the single-source path (SSP) vs. all-pair shortest path
(ASP) problem1. In contrast to an on-demand calculation, a pre-calculation
may reduce the overall computational costs if delays are required several
times, but increases the memory overhead. The ASP problem, which causes
high computational power and squares the memory overhead to O(n2), should
be solved in the case that delays between almost all nodes are needed. It is
su�cient to separately calculate the SSP, if only a small subset of nodes will
be analyzed.

1 We refer to the SSP and ASP problem as example for solving a routing decision
for some or all nodes.
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Model Computation Memory Comment
cost overhead

Analytical function low O(1) static delays
neglects geographical pos.

King method low O(n2) static delays
very high precision

complicated data acquisition
Topology generators low O(n2) static delays
(pre-computation) neglects geographical pos.
Topology generators very high low static delays
(on-demand) (Dijkstra's SSP) neglects geographical pos.
Euclidean embedding low O(n) data freely available

Table 19.1: Di�erent approaches for modeling the Internet delay space. The num-
ber of end-hosts is denoted by n.

Euclidean embedding. The fourth approach is based on the data of Internet
measurement projects, e.g. Surveyor [450], CAIDA [85], and AMP [25], which
are freely available. These projects typically perform active probing up to a
million destination hosts, derived from a small number of globally distributed
monitor hosts. This data is used as an input to generate realistic delay by
embedding hosts into a multi-dimensional Euclidean space [168].

Table 19.1 gives an overview about the properties of the aforementioned
approaches. Unfortunately, none of them considers realistic delay and jitter
based on the geographical position of hosts. That is, these approaches aim
to predict static delays, either the average or minimum delay between two
hosts. Furthermore, most of them do not accurately re�ect delay character-
istics caused by di�erent geographical regions of the world. This issue can,
however, highly in�uence the performance of P2P systems, as we will see
in Section 19.5.3. Only the Euclidean embedding seems to be an optimal
tradeo� between computational costs and memory overhead.

In the remainder of this chapter, we therefore present an alternative ap-
proach of obtaining end-to-end delays that ful�lls the requirements stated in
the previous section. It exploits the compact and scalable representation of
hosts in an Euclidean embedding, whilst considering the geographical posi-
tion of hosts to calculate delays and lifelike jitter. This approach is based on
rich data from two measurement projects as input.

19.4 Data from two Internet Measurement Projects

This section provides background information on the measured Internet
delay data we use in our model. Firstly, we use the measurement data of
the CAIDA's macroscopic topology probing project [85]. This data contains
a large volume of RTT measurements taken between 20 globally distributed
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monitor hosts2 and nearly 400,000 destination hosts. Within this project, each
monitor actively probes every host stored in the so-called destination list by
sending ICMP [371] echo-requests. This lists account for 313,471 hosts cov-
ering the routable IPv4 space, alongside 58,312 DNS clients. Each monitor-
to-destination link is measured 5-10 times a month, resulting in an overall
amount of 40 GB of measurement data. As an example, Fig. 19.1 plots the
data of August 2007 in relation to the geographical distance between each
monitor host and its destinations. Both, the geographical locations of the
monitors and the destination hosts are determined by MaxMind GeoIP ser-
vice3 [309]. It can be observed that there is a proportionality of the RTT to
the length of the transmission medium. The 'islands' at 8000 - 12000 km and
300 - 400 ms RTT arises from countries in Africa and South Asia.
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Fig. 19.1: The measured round-trip times in relation to the geographical distance
in August 2007

To study the changes of delay over time, we additionally incorporate the
data of the PingER project [463]. This project currently has more than
40 monitoring sites in 20 countries and about 670 destination sites in 150
countries. This number of monitor hosts is double than that of the CAIDA
project, whereas the amount of remote sites is by order of magnitudes smaller.
Nevertheless, the RTT for one monitor-to-destination link is measured up to
960 times a day, in contrast to 5-10 times per month by the CAIDA project.
2 For more information about the monitor hosts, see
http://www.caida.org/projects/ark/statistics/index.xml

3 The obviously impossible RTT values below the propagation time of the speed
of light in �ber can be explained by a false positioning through MaxMind.
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As seen later on, this allows us to accurately predict the inter-packet delay
variation between any two hosts located in di�erent countries or continents.

19.5 Model

This section details our model that aims to realistically predict end-
to-end delays between two arbitrary hosts chosen from a prede�ned host
set. This model approximates the OWD between two hosts by halving the
measured RTTs as obtained from the above mentioned measurement projects.
However, we are aware that this approach may over- or underestimate the
actual OWD in reality (cf. Sec 19.2). Nevertheless, the obtained delays are
non-static, and consider the geographical location of both the source and
destination host. Further, the model properties in terms of computation and
memory overhead are given.

19.5.1 Overview

We split up the modelling of delay into a two-part architecture. The �rst
part computes the minimum one-way delay between two distinct hosts based
on the measured round-trip time samples of CAIDA, and is therefore static.
The second part, on the other hand, is variable and determines the jitter.

Thus, the OWD between two hosts H1 and H2 is given by

delay(H1,H2) =
RTTmin

2
+ jitter. (19.1)

Fig. 19.2 gives an overview of our model. The static part (top left) gener-
ates a set of hosts from which the simulation framework can choose a subset
from. More precisely, this set is composed of the destination list of the CAIDA
measurement project. Using the MaxMind GeoIP database, we are able to
look up the IP addresses of these hosts and �nd out their geographic position,
i.e., continent, country, region, and ISP. In order to calculate the minimum
delay between any two hosts, the Internet is modelled as a multidimensional
Euclidean spaceS. Each host is then mapped to a point in this space so that
the minimum round-trip time between any two nodes can be predicted by
their Euclidean distance.

The random part (top right), on the other hand, determines the inter-
packet delay variation of this minimum delay; it uses the rich data of the
PingER project to reproduce end-to-end link jitter distributions. These dis-
tributions can then be used to calculate random jitter values at simulation
runtime.

Basically, both parts of our architecture require an o�ine computation
phase to prepare the data needed for the simulation framework. Our overall
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Fig. 19.2: Overview of our delay space modeling techniques

goal is then to have a very compact and scalable presentation of the underlay
at simulation runtime without introducing a signi�cant computational over-
head. In the following, we describe each part of the architecture in detail.

19.5.2 Part I: Embedding CAIDA hosts into the Euclidean Space

The main challenge of the �rst part is to position the set of destination
hosts into a multidimensional Euclidean space, so that the computed mini-
mum round-trip times approximate the measured distance as accurately as
possible. To do so, we follow the approach of [335] and apply the technique of
global network positioning. This results in an optimization problem of min-
imizing the sum of the error between the measured RTT and the calculated
distances.

In the following, we denote the coordinate of a host H in a D-dimensional
coordinate space S as cH = (cH,1, ..., cH,D). The measured round-trip time
between the hosts H1 and H2 is given by dH1H2 whilst the computed distance
d̂H1H2 is de�ned by a distance function that operates on those coordinates:

d̂H1H2 =
√

(cH1,1 − cH2,1)2 + ...+ (cH1,D − cH2,D)2. (19.2)

As needed for the minimization problems described below, we introduce
a weighted error function ε(·) to measure the quality of each performed em-
bedding:

ε(dH1H2 , d̂H1H2) =

(
dH1H2 − d̂H1H2

dH1H2

)2

. (19.3)
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Basically, this function calculates the squared error between the predicted
and measured RTT in a weighted fashion and has been shown to produce
accurate coordinates, compared to other error measures [335].

At �rst, we calculate the coordinates of a small sample of N hosts, also
known as landmarks L1 to LN . A precondition for the selected landmarks is
the existence of measured round-trip times to each other. In our approach,
these landmarks are chosen from the set of measurement monitors from the
CAIDA project, since these monitors ful�ll this precondition. In order to
achieve a good quality of embedding, the subset ofN monitors must, however,
be selected with care.

Formally, the goal is to obtain a set of coordinates cL1 , ..., cLN for the
selected N monitors. These coordinates then serve as reference points with
which the position of any destination host can be oriented in S. To do so, we
seek to minimize the following objective function fobj1:

fobj1(cL1 , ..., cLN ) =
N∑

i=1|i>j

ε(dLiLj , d̂LiLj ). (19.4)

There are many approaches with di�erent computational costs that can
be applied [295], [335]. Recent studies have shown that a �ve dimensional
Euclidean embedding approximates the Internet delay space very well [397].
Therefore, we select N(=6) nodes out of all available monitors using the max-
imum separation method4 [168]. For this method, we consider, however, only
the minimum value across the samples of inter-monitor RTT measurements.

In the second step, each destination host is iteratively embedded into
the Euclidean space. To do this, round-trip time measurements to all N
monitor hosts must be available. Similarly to the previous step, we take the
minimum value across the monitor-to-host RTT samples. While positioning
the destination hosts coordinate into S, we aim to minimize the overall error
between the predicted and measured monitor-to-host RTT by solving the
following minimization problem fobj2:

fobj2(cH) =
N∑
i=1

ε(dHLi , d̂HLi). (19.5)

Because an exact solution of this non-linear optimization problem is very
complex and computationally intensive, an approximative solution can be
found by applying the generic downhill simplex algorithm of Nelder and
Mead [230].

4 This method determines the subset of N monitors out of all available monitors
which produces the maximum sum for all inter-monitor round-trip times.
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19.5.3 Part II: Calculation of Jitter

Since the jitter constitutes the variable part of the delay, a distribution
function is needed that covers its lifelike characteristics. Inspection of the
measurement data from the PingER project shows that this deviation clearly
depends on the geographical region of both end-hosts. Table 19.2 depicts an
excerpt of the two way-jitter variations of end-to-end links between hosts
located in di�erent places in the world. These variations can be monthly
accessed on a regional-, country-, and continental level [463]. We note that
these values specify the interquartile range (iqr) of the jitter for each end-
to-end link constellation. This range is de�ned by the di�erence between
the upper (or third) quartile Q3 and the lower (or �rst) quartile Q1 of all
measured samples within one month. The remarkably high iqr-values between
Africa and the rest of the world are explained by the insu�cient stage of
development of the public infrastructure.

To obtain random jitter values based on the geographical position of hosts,
for each end-to-end link constellation we generate a log-normal distribution5

with the following probability distribution function:

f(x;µ, σ) =

 1√
2πσx

exp
(
− 1

2

(
ln x−µ
σ

)2
)

if x > 0

0 otherwise.
(19.6)

The main challenge is then to identify the parameters µ (mean) and
σ (standard deviation) by incorporating the measurement data mentioned
above. Unfortunately, both values cannot be obtained directly from PingER.
That is, we are in fact able to determine the expectation value of each con-
stellation, which is given by the di�erence between the average RTT and the
minimum RTT. Both values are also measured by the PingER project, and
are available in the monthly summary reports, too. The variance or standard
deviation is, however, missing.

For this reason, we formulate an optimization problem that seeks to �nd a
parameter con�guration for µ and σ having two di�erent goals in mind. First,
the chosen con�guration should minimize the error between the measured
inter quartile range iqrm and iqr(X) which is generated by the log-normal
distribution. Second, it should also minimize the measured and generated
expectation, Em and E(X) respectively. Formally, this optimization problem
is given by

ferror =
(

E(X)− Em

Em

)2

+
(

iqr(X)− iqrm
iqrm

)2

. (19.7)

5 In [168], it is shown based on real measurements that jitter values can be ap-
proximated by a log-normal distribution.
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Europe Africa S. America N. America Asia

Europe 1.53 137.14 3.07 1.29 1.19
Africa 26.91 78.17 3.69 31.79 1.11
S. America 14.17 69.66 13.14 10.78 14.16
N. America 2.02 73.95 3.63 0.96 1.33
Oceania 4.91 86.28 4.19 1.31 2.03
Balkans 1.83 158.89 3.89 1.43 1.25
E. Asia 1.84 114.55 3.02 1.38 0.87
Russia 2.29 161.34 4.79 2.53 1.59
S. Asia 7.96 99.36 8.99 16.48 7.46
S.E. Asia 0.86 83.34 4.43 13.36 1.27
Middle East 9.04 120.23 11.39 10.87 10.20

Table 19.2: End-to-end link inter-packet delay variation in msec (January 2008).

where E(X)= eµ+σ2/2 and iqr(X)= Q3 − Q1 as described above. To
solve this, we apply the downhill simplex algorithm [230]. Observation of
measurement data shows that the iqr-values are usually in the range of 0
to 20 milliseconds6. With respect to this, the three initial solutions are set
to (µ = 0.1, σ = 0.1), (µ = 0.1, σ = 5), and (µ = 5, σ = 0.1), because
these parameters generate random jitter values �tting this range exactly.
The minimization procedure iterates then only 100 times to obtain accurate
results.

We note that the obtained values for µ and σ describe the distribution of
the two-way jitter for a speci�c end-to-end link constellation. The one-way
jitter is then obtained by dividing the randomly generated values by two.
Further, each end-to-end link constellation is directed from a geographical
region. For example, the delay variation of a packet that travels from Eu-
rope to Africa is signi�cantly higher than the one from Africa to Europe (cf.
Tab. 19.2). By using two directed end-to-end link constellations, one starting
from Europe and the other one starting from Africa, we are able to re�ect
this asymmetry.

19.5.4 Algorithm and Memory Overhead

In this section, we brie�y describe the properties of our model in terms
of computational costs and storage overhead. These properties are of major
importance since they signi�cantly in�uence the applicability of the model in
large scale simulations.

First of all, the embedding of all hosts n into a D-dimensional Euclidean
space has a scalable representation of O(n) while it adequately preserves the
properties of the data measured by the CAIDA project. Since the process

6 Africa constitutes a special case. For this, we use another initial con�guration as
input for the downhill simplex algorithm.
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involved in obtaining this representation is complex and computationally
expensive, it is typically done once. The resulting data can be reused for
each simulation run, e.g., in terms of an XML �le. In order to obtain the
minimum delay between any two hosts in this embedding, the evaluation of
the distance function takes then O(D) time which is negligible.

The calculation of the jitter parameters of µ and σ for each possible
end-to-end link constellation is also done once, either before the simulation
starts or o�ine. Thus, similar to the pre-computation of the host coordi-
nates, this process does not introduce any computational overhead into the
actual simulation process. Nevertheless, the storage of the both parameters
µ and σ takes at �rst sight a quadratic overhead of O(n2). Due to the fact
that the amount of regions, countries and continents is limited, the required
amount of memory is, however, negligible. For example, the processing of the
data provided in the PingER summary report of January 2008 result in 1525
distinct link constellations. For each of them, the two parameters µ and σ
must be precomputed and stored resulting in a overall storage overhead of
(1525× 2)× 4 bytes≈ 12kB.

19.6 Evaluation

This section describes the setup of our experiments, and any metrics we
think signi�cantly in�uence the performance of P2P systems. We perform
a comparative study against three existing approaches for obtaining end-to-
end delays: (i) the King method, (ii) topology generators and (iii) analytical
function. Our aim is to show that our model realistically re�ects the prop-
erties of the Internet delay space. To this end, we show that the calculated
delay between non-measured end-to-end links is also a suitable presumption
compared to the delays that occur in the Internet.

19.6.1 Experimental Setup

The King method serves as a reference point in our analysis because it
provides measured Internet delay data among a large number of globally
distributed DNS servers. We use the measurement data of [513] collected
in October 2005. This matrix contains 3997 rows/columns representing the
all-pair delays between IP hosts located in North America, Europe and Asia.

With regard to the topology generators, we are especially interested in the
GT-ITM and Inet generators because they are often used in P2P simulations.
For GT-ITM, we create a 9090 node transit-stub topology. For Inet, we create
a topology for a network size of 10000 nodes. We use the default settings of
placing nodes on a 10000 by 10000 plane with 30% of total nodes as degree-
one nodes.
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As seen in Section 19.4, there is a correlation between the measured RTTs
and the geographical distance of peers. In order to obtain an analytical func-
tion that re�ects this correlation, we perform a least squares analysis so
that the sum of the squared di�erences between the calculated and the mea-
sured RTT is minimized. Applying linear regression with this least squares
method on the measurement data of 40 GB is, however, hardly possible.
Therefore, we classify this data into equidistant intervals of 200 km (e.g.
(0km, 200km], (200km, 400km] ...), and calculate the median round-trip time
of each interval. Finally, linear regression gives us the following estimation
for the RTT in milliseconds:

fworld(da,b) = 62 + 0.02 ∗ da,b (19.8)

whereas da,b is the distance between two hosts in kilometers. The delay is
then given by f(da,b) divided by two. Fig. 19.3 illustrates this function and
the calculated median RTT times of each interval.
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19.6.2 Metrics

To benchmark the di�erent approaches on their ability to realistically
re�ect Internet delay characteristics, we apply a set of metrics that are known
to signi�cantly in�uence the performance of P2P systems [513]:

� Cuto� delay clustering � In the area of P2P content distribution net-
works, topologically aware clustering is a very important issue. Nodes are
often grouped into clusters based on their delay characteristics, in order to
provide higher bandwidth and to speed up access [169]. The underlying delay
model must therefore accurately re�ect the Internet's clustering properties.
Otherwise, analysis of system performance might lead to wrong conclusions.

To quantify this, we use a clustering algorithm which iteratively merges
two distinct clusters into a larger one until a cuto� delay value is reached. In
more detail, at �rst each host is treated as a singleton cluster. The algorithm
then determines the two closest clusters to merge. The notion of closeness
between two clusters is de�ned as the average delay between all nodes con-
tained in both cluster. The merging process stops if the delay of the two
closest clusters exceeds the prede�ned cuto� value. Afterwards, we calculate
the fraction of hosts contained in the largest cluster compared to the entire
host set under study.

� Spatial growth metric � In many application areas of P2P systems, such
as in mobile P2P overlays, the cost of accessing a data object grows as the
number of hops to the object increases. Therefore, it is often advantageous to
locate the 'closest' copy of a data object to lower operating costs and reduce
response times. E�cient distributed nearest neighbor selection algorithms
have been proposed to tackle this issue for growth-restricted metric spaces
[22]. In this metric space, the number of nodes contained in the radius of delay
r around node p, increases at most by a constant factor c when doubling this
delay radius. Formally, let Bp(r) denote the number of nodes contained in
a delay radius r, then Bp(r) ≤ c · Bp(2r). The function Bp(r)/Bp(2r) can
therefore be used to determine the spatial growth c of a delay space.

� Proximity metric � In structured P2P overlays which apply proximity
neighbor selection (PNS), overlay neighbors are selected by locating nearby
underlay nodes [185]. Thus, these systems are very sensitive to the underlying
network topology, and especially to its delay characteristics. An insu�cient
model of the Internet delay space would result in routing table entries that
do not occur in reality. This would in turn directly in�uence the routing
performance and conclusions might then be misleading. To re�ect the neigh-
borhood from the point of view of each host, we use the D(k)-metric. This
metric is de�ned by D(k) = 1

|N |
∑
p∈N d(p, k), whereas d(p, k) is the average

delay from node p to its k-closest neighbors in the underlying network [297].
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19.6.3 Analysis with Measured CAIDA data

Before we compare our system against existing approaches, we brie�y
show that our delay model produces lifelike delays even though their calcu-
lation is divided into two distinct parts.

As an illustration of our results, Fig. 19.4 depicts the measured RTT
distribution for the Internet as seen from CAIDA monitors in three di�er-
ent geographical locations, as well as the RTTs predicted by our model. We
note that these distributions now contain all available samples to each dis-
tinct host, as opposed to the previous section where we only considered the
minimum RTT.

First, we observe that our predicted RTT distribution accurately matches
the measured distribution of each monitor host. Second, the RTT distribu-
tion varies substantially in di�erent locations of the world. For example, the
measured path latencies from China to end-hosts spread across the world
have a median RTT more than double that of the median RTT measured
in Europe, and even triple that of the median RTT measured in the US.
Additionally, there is a noticeable commonality between all these monitors
regarding to the fact that the curves rise sharply in a certain RTT interval,
before they abruptly �atten out. The former fact indicates a very high latency
distribution within these intervals, whereas the latter shows that a signi�cant
fraction of the real-world RTTs are in the order of 200 ms and above.

In contrast to this, Fig. 19.5 shows the RTT distribution as seen from
a typical node of the network when using the topologies generated by Inet
and GT-ITM as stated before. When comparing Fig. 19.4 and Fig. 19.5,
it can be observed that the real-world RTT distributions signi�cantly di�er
from the RTT distributions created by the topology generators. In particular,
around 10-20% of the real-world latencies are more than double than their
median RTT. This holds especially true for the monitor hosts located in
Europe and in the US (see Fig. 19.4). Topology generators do not re�ect this
characteristic. Additionally, our experiments showed that in the generated
topologies, the RTT distribution seen by di�erent nodes does not signi�cantly
vary, even though they are placed in di�erent autonomous subsystems and/or
router levels. Thus, current topology generators do not accurately re�ect the
geographical position of peers, something which heavily in�uences the node's
latency distribution for the Internet.

19.6.4 Comparison to Existing Models

We compare our model (coordinate-based) against existing approaches
for obtaining end-to-end delays using the metrics presented before. The ref-
erence point for each metric is the all-pair delay matrix received by the King
method. We use this because the data is directly derived from the Internet.
However, we are aware that this data only represents the delay space among
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the edge networks. To enable a fair comparison, we select, from our �nal host
set, all hosts that are marked as DNS servers in CAIDA's destination list.
We only utilize those that are located in Europe, Northern America or Asia.
These nodes form the host pool for our coordinate-based model, and the an-
alytical function, from which we chose random sub-samples later on. For the
generated GT-ITM topology, we select only stub routers for our experiments
to obtain the delays among the edge networks. For the Inet topology, we
repeat this procedure for all degree-1 nodes. To this end, we scale the delays
derived from both topologies such that their average delays matches the av-
erage delay of our reference model. While this process does not a�ect delay
distribution's properties, it alleviates the direct comparison of results.

The results presented in the following are the averages over 10 random
sub-samples of each host pool whereas the sample size for each run amounts
to 3000 nodes7.

We begin to analyse the cluster properties of the delay spaces produced by
each individual approach. Fig. 19.6 illustrates our results after applying the
clustering algorithm with varying cuto� values. It can be observed that for
the reference model, our approach , and the distance function, the curves rise
sharply at three di�erent cuto� values. This indicates the existence of three
major clusters. By inspecting the geographical origin of the cluster members
of the latter two models, we �nd that these clusters exactly constitute the
following three regions: Europe, Asia and North America. Further, the three
cuto� values of the analytical function are highly shifted to the left, compared
to the values of the reference model. Nevertheless, the basic cluster properties
are preserved. The curve of our delay model most accurately follows the one
of the reference model, but it is still shifted by 10-20 ms to the left. Finally,
both topology generated delays do not feature any clear clustering property.
This con�rms the �ndings that have already been observed in [513].

To analyse the growth properties of each delay space, we performed several
experiments each time incrementing the radius r by one millisecond. Fig. 19.7
depicts our results. The x-axis illustrates the variation of the delay radius r
whereas the y-axis shows the median of all obtained Bp(2r) /Bp(r) samples
for each speci�c value of r. Regarding the reference model, it can be seen that
the curves oscillates two times having a peak at delay radius values 20 ms
and 102 ms. Also, our coordinate-based approach and the analytical function
produces these two characteristic peaks at 26 ms and 80 ms, and 31 ms and
76 ms respectively8.

In all of the three mentioned delay spaces, the increase of the delay radius
�rstly covers most of the nodes located in each of the three major clusters.
Afterwards, the spatial growth decreases as long as r is high enough to cover
7 It is shown in [513] that the properties we are going to ascertain by our metrics
are independent of the sample size. Thus, it does not matter if we set it to 500
or 3000 nodes.

8 The minimum delay produced by the analytical function is 31 ms, no matter the
distance. This is why there are no values for the �rst 30 ms of r.
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Fig. 19.6: Simulation results for cuto� delay clustering.

nodes located in another major cluster. Lastly, it increases again until all
nodes are covered, and the curves �atten out. The derived growth constant
for this �rst peak of the analytical function is, however, an order of magni-
tude higher than the constants of the others. This is clearly a consequence
of our approximation through linear regression. Since this function only rep-
resents an average view on the global RTTs, it cannot predict lifelike delays
with regard to the geographical location of peers. Nevertheless, this function
performs better than both topology generated delay spaces. More precisely,
none of both re�ect the growth properties observed by our reference delay
space.

The experiments with the D(k)-metric con�rm the trend of our previ-
ous �ndings. The predicted delays of our coordinate-based model accurately
matches the measured delays of the reference model. Fig. 19.8 illustrates the
simulation results. While varying the number of k (x-axis), we plot the de-
lay derived by the D(k)-function over the average to all-node delay. Whilst
especially the measured delays and the one predicted by our model show the
noticeable characteristic that there are a few nodes whose delay are signif-
icantly smaller than the overall average, the topology generated delays do
not resemble this. As a consequence, it is likely that the application of PNS
mechanisms in reality will lead to highly di�erent results when compared to
the ones forecasted with GT-ITM or Inet topologies. The analytical function,
on the other hand, performs signi�cantly better than the topology genera-
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tors, even though there is also a noticeable di�erence in the results obtained
by former two delay spaces.

19.7 Summary

Simulation is probably the most important tool for the validation and
performance evaluation of P2P systems. However, the obtained simulation
results may strongly depend on a realistic Internet model. Several di�erent
models for the simulation of link delays have been proposed in the past. Most
approaches do not incorporate the properties of the geographic region of the
host. Hosts in a generated topology thus have overly uniform delay proper-
ties. The analytical approach, on the other hand, does not provide a jitter
model that re�ects the di�erent regions and the absolute delays di�er from
more realistic approaches. Both the King model and our proposed coordinate-
based system incorporating data from real-world measurements yield similar
results. The only major drawback of King is its limited scalability. It requires
memory proportional to n2 and available datasets are currently limited to
3997 measured hosts. Statistical scaling of this data allows to preserve delay
properties, but produces solely static delay values [513].

The model presented in this chapter has only linear memory costs and
provides a much larger dataset of several hundred thousand hosts. Com-
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pared to topology generators the delay computation time is low. In summary,
coordinate-based delay models seem to be an optimal tradeo� between many
con�icting properties.
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